

State of the Wind Industry:

Technology, Economics and Future Evolution

Robert W. Thresher

Director, National Wind Technology Center

Growth of Wind Energy Capacity Worldwide

Sources: BTM Consult Aps, March 2001 Windpower Monthly, January 2002

International Market Drivers

Europe

- high mandated purchase rates (85-90% of retail, 10-12 cents/kWh)
- strong government and public commitment to the environment, including climate change
- population density & existing developments driving off shore deployment in Europe

Developing World

- huge capacity needs
- lack of existing infrastructure (grid)
- pressure for sustainable development (IDB's, climate change)
- tied aid

CORRD

Colorado Renewable Resource Database

http://www.coloradoenergy.org/corrd/default.asp

Wind Energy Technology

At it's simplest, the wind turns the turbine's blades, which spin a shaft connected to a generator that makes electricity. Large turbines can be grouped together to form a wind power plant, which feeds power to the electrical transmission system.

Sizes and Applications

Small (≤10 kW)

- Homes
- Farms
- Remote Applications
 (e.g. water pumping, telecom sites, icemaking)

Intermediate (10-250 kW)

- Village Power
- Hybrid Systems
- Distributed Power

Large (250 kW - 2+MW)

- Central Station Wind Farms
- Distributed Power

Cost of Energy Trend

1979: 40 cents/kWh

- Increased
 NSP 107 MW Lake
 4 cents/kWh (
- R&D Advances
- Manufacturing Improvements

NSP 107 MW Lake Benton wind farm 4 cents/kWh (unsubsidized)

2004: 3 - 5 cents/kWh

Finances and Incentives

- Production Tax Credit
 - 1.7 cents/kWh (escalating) for 10 years equates to around 1.1 cents/kWh reduction in contract price
 - deadline pressure increases costs
- State and Local tax, etc. can be significant
 - +/- 0.5 cents/kWh impact
- Public Power (100% debt at tax free rates)
 - 60% of GenCo or IPP cents/kWh
- Renewable Energy Production Incentive
 - annual appropriations problem leads to little impact

Avian Impacts with Wind Turbines

- ➤ Data suggest the most significant avian wind-turbine interaction problem in the U.S. is in the Altamont WRA.
- There is no reason that avian issues should be a concern for future wind farm development; any potential problem should be identified and dealt with before micrositing occurs.
- Two guidance documents have been adopted by the NWCC: (1) *Permitting of Wind Energy Facilities*, and (2) *Metrics and Methods for Avian Studies*.
- Facilities developed following these guidelines have not experienced significant avian impact issues.

NREL's National Wind Technology Center Research and Development

Basic & Applied Research

• World-Class Testing Facilities

Utility Grid Interaction Measurements at Lake Benton, Minnesota and Storm Lake, Iowa

- NREL's monitoring effort at Lake Benton II entering the second year of operation. More than 150 million data points have been collected.
- Data collection at Storm Lake (MidAmerican Energy's Buena Vista Substation, about 113 MW wind capacity) began in January 2001 by NREL's subcontractor.
- Data collection at Xcel Energy's Buffalo Ridge substation (about 220 MW wind capacity) began in February 2001 by NREL's subcontractor
- Data offers encouraging evidence that accurate wind power forecast is feasible.

Wind Resource Mapping

- Identifies most promising areas for wind energy development
- Employs geographic information system technology to create layers of key information
- Used by state energy planners, Indian tribes, and developers
- Approach changing from empirical to numerical modeling techniques
- Forecasting, resource assessment and site specific inflow quantification methods are likely to converge into a single approach

The Challenging DOE Program Goals

Low Wind Speed Technology

Develop wind turbine technology (>100kW) capable of 3 cents/kWh in Class 4 (13.4 mph wind site) by 2010

- Increase area available for wind energy development by a factor of 20 or more
- Accelerate achievement of the domestic renewable energy generations capacity goal

Distributed Wind Systems

- Reduce the cost of energy from distributed wind systems to \$.10-\$.15/kWh at Class 3 wind sites (12 mph wind site) by 2007
 - Increase distributed energy capacity in the United States

Turbines Under Development with Industry

NREL THE EVOLUTION OF COMMERCIAL U.S. WIND TECHNOLOGY

Low Wind Speed Technology Development

- Low Wind Speed Technology solicitation for \$30M in Industry Partnerships over the next four years:
 - Concept Studies; \$100K-200K and no cost sharing
 - Advanced Component Development; 30% cost sharing
 - Advanced Systems Development; 30% cost sharing
- Expected Technology Areas for Development
 - Larger-Scale 2 to 5 MW with rotor diameters to 120 meters
 - Innovative rotor designs pushing the technology:
 - ✓ Flexible, low solidity high tip speeds
 - ✓ Expandable rotor concepts
 - ✓ Wind feed forward and load feedback controls
 - ✓ Hybrid E-glass Carbon composites
 - Innovative lower-cost drive trains
 - Towers of novel design 85 to 120 meters tall

A Low Wind Speed Drive Train Concept:

Multi-Permanent Magnet Generator Concept

Multi-PM Generator with Single Stage Integrated Gearbox

Wind Energy:

A Maturing Technology with a Bright Future

Current Status of Wind Technology:

- •Wind Technology has matured over 25 Years
- •Availability now reported at 98-99%
- •Certification to international standards for new turbine designs helps avoid "major failures"
- •Current designs produce electricity for 4-6 cents/kWh at Class 6 wind sites (15 mph or higher average wind)

Low Wind Speed Technology Innovations for the future:

- Larger-scale 2 to 5 MW, with rotors diameters to 120 meters
- Flexible, thin high-speed rotors
- Extendable rotor concepts
- Hybrid glass-carbon rotors
- Load feedback control systems
- Custom designed low-speed, permanent-magnet generators
- Self-erecting tall tower designs, 85 to 100 meters tall
- Offshore wind turbines